1 DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
felica26769981 edited this page 2025-04-08 01:46:50 +08:00
This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.


Today, we are delighted to reveal that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier model, DeepSeek-R1, along with the distilled versions ranging from 1.5 to 70 billion parameters to build, experiment, and properly scale your generative AI concepts on AWS.

In this post, we demonstrate how to start with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable steps to release the distilled versions of the designs as well.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language model (LLM) developed by DeepSeek AI that utilizes support discovering to boost reasoning capabilities through a multi-stage training procedure from a DeepSeek-V3-Base structure. A key identifying feature is its reinforcement knowing (RL) action, which was utilized to fine-tune the model's responses beyond the standard pre-training and fine-tuning procedure. By incorporating RL, DeepSeek-R1 can adjust more effectively to user feedback and goals, eventually improving both significance and clearness. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) method, implying it's geared up to break down intricate questions and reason through them in a detailed manner. This guided reasoning process enables the design to produce more accurate, transparent, and detailed responses. This design integrates RL-based fine-tuning with CoT abilities, aiming to create structured responses while focusing on interpretability and user interaction. With its extensive abilities DeepSeek-R1 has actually captured the industry's attention as a versatile text-generation design that can be integrated into various workflows such as agents, rational reasoning and data interpretation jobs.

DeepSeek-R1 uses a Mixture of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture enables activation of 37 billion parameters, making it possible for effective reasoning by routing queries to the most appropriate expert "clusters." This technique enables the design to specialize in different problem domains while maintaining overall effectiveness. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for inference. In this post, we will use an ml.p5e.48 xlarge instance to release the model. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the reasoning capabilities of the main R1 design to more efficient architectures based on popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a procedure of training smaller sized, more effective models to simulate the behavior and reasoning patterns of the larger DeepSeek-R1 model, using it as a teacher model.

You can release DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we advise releasing this design with guardrails in place. In this blog, we will use Amazon Bedrock Guardrails to introduce safeguards, avoid hazardous content, and evaluate designs against crucial safety requirements. At the time of writing this blog site, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can create numerous guardrails tailored to different usage cases and use them to the DeepSeek-R1 design, enhancing user experiences and standardizing safety controls across your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 model, you need access to an ml.p5e circumstances. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and verify you're utilizing ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are releasing. To request a limitation increase, develop a limitation increase demand and connect to your account team.

Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the right AWS Identity and Gain Access To Management (IAM) permissions to use Amazon Bedrock Guardrails. For instructions, see Establish consents to utilize guardrails for material filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails permits you to introduce safeguards, avoid damaging material, and assess designs against key security requirements. You can carry out precaution for the DeepSeek-R1 model using the Amazon Bedrock ApplyGuardrail API. This permits you to apply guardrails to examine user inputs and model actions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.

The general flow involves the following actions: First, the system receives an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the design for inference. After getting the model's output, another guardrail check is used. If the output passes this last check, it's returned as the outcome. However, 89u89.com if either the input or output is stepped in by the guardrail, a message is returned suggesting the nature of the intervention and whether it occurred at the input or output stage. The examples showcased in the following sections demonstrate inference utilizing this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace provides you access to over 100 popular, emerging, and specialized structure models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following steps:

1. On the Amazon Bedrock console, select Model brochure under Foundation models in the navigation pane. At the time of writing this post, you can utilize the InvokeModel API to invoke the model. It does not support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a provider and pick the DeepSeek-R1 model.

The design detail page offers essential details about the model's capabilities, rates structure, and application guidelines. You can discover detailed usage guidelines, consisting of sample API calls and code bits for integration. The model supports various text generation tasks, consisting of content production, code generation, and question answering, using its reinforcement finding out optimization and CoT thinking capabilities. The page likewise consists of release choices and licensing details to assist you start with DeepSeek-R1 in your applications. 3. To begin using DeepSeek-R1, pick Deploy.

You will be prompted to configure the implementation details for DeepSeek-R1. The design ID will be pre-populated. 4. For Endpoint name, get in an endpoint name (between 1-50 alphanumeric characters). 5. For Number of circumstances, enter a variety of instances (in between 1-100). 6. For Instance type, forum.pinoo.com.tr choose your circumstances type. For ideal efficiency with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is advised. Optionally, you can set up sophisticated security and facilities settings, consisting of virtual private cloud (VPC) networking, service role authorizations, and file encryption settings. For most use cases, the default settings will work well. However, for production releases, you might want to examine these settings to align with your company's security and compliance requirements. 7. Choose Deploy to begin utilizing the design.

When the release is complete, you can check DeepSeek-R1's capabilities straight in the Amazon Bedrock play area. 8. Choose Open in play area to access an interactive interface where you can experiment with different triggers and change design parameters like temperature and optimum length. When using R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat template for optimal results. For example, content for inference.

This is an exceptional method to explore the design's reasoning and text generation abilities before incorporating it into your applications. The play area provides immediate feedback, helping you understand how the design reacts to numerous inputs and letting you fine-tune your triggers for optimum results.

You can rapidly test the model in the playground through the UI. However, to invoke the deployed model programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run inference using guardrails with the deployed DeepSeek-R1 endpoint

The following code example shows how to perform reasoning utilizing a released DeepSeek-R1 design through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have actually created the guardrail, utilize the following code to implement guardrails. The script initializes the bedrock_runtime customer, sets up reasoning criteria, and sends out a request to create text based on a user prompt.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, built-in algorithms, and prebuilt ML options that you can deploy with simply a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained models to your use case, with your information, and release them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart offers 2 practical approaches: using the intuitive SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's check out both techniques to help you select the method that best matches your requirements.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following actions to release DeepSeek-R1 using SageMaker JumpStart:

1. On the SageMaker console, select Studio in the navigation pane. 2. First-time users will be prompted to develop a domain. 3. On the SageMaker Studio console, pick JumpStart in the navigation pane.

The model web browser shows available designs, with details like the company name and model abilities.

4. Search for DeepSeek-R1 to view the DeepSeek-R1 model card. Each design card reveals essential details, including:

- Model name

  • Provider name
  • Task classification (for instance, Text Generation). Bedrock Ready badge (if suitable), showing that this design can be signed up with Amazon Bedrock, enabling you to utilize Amazon Bedrock APIs to invoke the model

    5. Choose the model card to see the design details page.

    The model details page includes the following details:

    - The model name and supplier details. Deploy button to release the design. About and Notebooks tabs with detailed details

    The About tab consists of important details, such as:

    - Model description.
  • License details.
  • Technical specs.
  • Usage standards

    Before you release the model, systemcheck-wiki.de it's recommended to review the design details and license terms to confirm compatibility with your usage case.

    6. Choose Deploy to continue with deployment.

    7. For Endpoint name, use the immediately generated name or develop a customized one.
  1. For example type ¸ choose an instance type (default: ml.p5e.48 xlarge).
  2. For Initial instance count, get in the number of circumstances (default: 1). Selecting appropriate circumstances types and counts is important for expense and efficiency optimization. Monitor your deployment to adjust these settings as needed.Under Inference type, Real-time reasoning is selected by default. This is enhanced for sustained traffic and low latency.
  3. Review all configurations for precision. For this model, we highly advise sticking to SageMaker JumpStart default settings and making certain that network seclusion remains in place.
  4. Choose Deploy to release the model.

    The deployment process can take several minutes to complete.

    When release is total, your endpoint status will alter to InService. At this moment, the model is prepared to accept reasoning demands through the endpoint. You can keep an eye on the release development on the SageMaker console Endpoints page, which will display appropriate metrics and status details. When the release is total, you can conjure up the design using a SageMaker runtime client and incorporate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To get begun with DeepSeek-R1 utilizing the SDK, you will need to set up the SageMaker Python SDK and make certain you have the needed AWS approvals and environment setup. The following is a detailed code example that demonstrates how to deploy and utilize DeepSeek-R1 for inference programmatically. The code for deploying the design is supplied in the Github here. You can clone the note pad and run from SageMaker Studio.

    You can run extra demands against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can likewise use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail utilizing the Amazon Bedrock console or the API, and implement it as shown in the following code:

    Clean up

    To prevent unwanted charges, finish the steps in this area to tidy up your resources.

    Delete the Amazon Bedrock Marketplace deployment

    If you deployed the model using Amazon Bedrock Marketplace, complete the following actions:

    1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, select Marketplace implementations.
  5. In the Managed releases area, find the endpoint you wish to erase.
  6. Select the endpoint, and on the Actions menu, pick Delete.
  7. Verify the endpoint details to make certain you're deleting the appropriate deployment: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart model you released will sustain expenses if you leave it running. Use the following code to erase the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and release the DeepSeek-R1 design using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to begin. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Starting with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI companies develop ingenious options utilizing AWS services and sped up compute. Currently, he is concentrated on establishing strategies for fine-tuning and optimizing the reasoning performance of big language models. In his downtime, Vivek enjoys hiking, seeing movies, and trying various cuisines.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is a Professional Solutions Architect dealing with generative AI with the Third-Party Model Science group at AWS.

    Banu Nagasundaram leads product, engineering, and tactical partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is enthusiastic about developing services that assist customers accelerate their AI journey and unlock company worth.